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ABSTRACT
A general formalism is developed to describe the nonlinear evolution
associated with the parametric decay of an intense, coherent electromagnetic
wave into an electrostatic wave, its second harmonic, and scattered electro-
magnetic waves in a homogeneous plasma. The effects of pump depletion are
neglected and it is assumed that all waves are coherent. Two classes of
solutions are found. One class is explosively unstable, while the other con-

sists of growing aperiodic oscillations. The evolution of modulational modes
is discussed.
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I. INTRODUCTION

The parametric decay of an intense, electromagnetic wave into electro-
static waves and scattered electromagnetic waves in fully ionized plasmas
has been studied extensively.'™'’ These studies have wide applications
to laser fusion experiments, interactions of pulsar radiation with a plasma,
ionospheric modification experiments, etc. There is still considerable in-
temtinthamnliwmluﬁwar'ypmpertiesofthesewavessmcethey
ultimately determine the importance of a particular process to an experi-
ment. It is also well known that certain nonlinearities completely change
the nature of a particular mode; e.g., they may lead to explosive instabil-
ities. :

In this study, we examine some nonlinear properties associated with
the parmtric decay'of an intgrfieL c_:oherent, e]_.ect;mgmuc wave mto e

an electrostatic wave, its second harmonic and scattered electromagnetic

waves in a homogeneous plasma. For the case of scattering off ion acoustic
waves, the mode coupling processes of many harmonics must generally be con-
sidered. Nonetheless, there are cases in which a modulational mode and
only one harmonic can exist and it is situations of this kind that we con-
sider.

We find that general conditions exist for which explosive instabilities
result, and that this phenomenon may occur after about a linear e-folding
time.

P
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II. GENERAL FORMALISM
Consider the propagation of a large-amplitude, linearly polarized,
coherent electromagnetic pump wave,

Eo =2E & cos(iooi -ut) )

in a homogeneous plasma. In the absence of damping, the pair (uo,ko) satis-
fies the usual dispersion relation,

uoz = kozca + up’ £ 2)

->

provided that the electron quiver velocity V, =(-ef /my) is non-relativ-
istic, !*-18

Wacmsidcrtheuseinuhichﬂummexcitesalow-fréqumcy
modulational mode (w,k) and its harmonic (2w,2k) , as well as the two
lowest-order high-frequency sidebands , (w, =w tw, k, =K ¢ kS
@y, = W £ wy, Ky, » Zk £ k) , associated with each wave. The effects of
pump depletion m neglected and it is assumed that all waves are coherent.
It is shown below that, under these conditions, if the two modes satisfy
certain general properties, an explosive instability results and the waves
become unbounded in finite time.

First, we calculate the perturbed current densities, since they are the
sources that determine the nonlinear evolution of the waves. In first order,
they are as follows:

k .
L(l) = o,k ¥ 3 P (ow) 1%; : (3a)
i) = e (P, (yw) * Bx; ()] (%)

’ o TR il . i G et il
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where o, = imp‘/hmt is the linear plasma conductivity at frequencies w, ,

x(k,w) = (mpz}(nok*) I dvk e U £, /(m-f-ﬂ is the linear susceptibility,

S e ]
.

and
| LA YR8 AR ®
. is the linear field, including the ponderomotive contribution, governing the

motion of the electroms at frequency w. !

In second order, the Vlasov equations for the perturbed electron density
distributions take the form: | |

A EkNED - %[5152) T+ Py 0 £+ i_k-i,ka] =0 , (a)
-2i (“"i';)fg) 7 ns:' [i;g) ..v.vfo i 3kﬁvfk] ks (50)

*> (2
‘i(“'{rz'v)ftg 1 :T [go'vvfl?) 2 El:'%fi:ko

| AR ACSL RS AC IS I A t;.vvfg)] =0, =)

« »>. (2 7 1
H 1wy, - Ez:t -v)fgt) e % [Eo'vvfgk) i EZkﬁvf:ko)

s BT ED o 0 (1)] -0 , ()
E ™
| 3@ . v i [21-8, + 8" -1, (6a)
‘ and

PR . ik B, R (6b)




are the fields that determine the second-order electron dynamics. !® The
second-order, perturbed current densities are due to the electron motion.
They can be reduced to the following:

j[z) - e =R
k

% e
2 ix) =% ng” (7b)
5 1@ ., i:_ [go n® + Ena . B nﬂgn] ‘ )
3, - s ;% [ nka)] 7d)
, where
: ne) = g X kWP, e
; . n{?) . [Xe Ge)p?) + 18k [0y )] kapk] (8b)
s» %) o [x, (k)P - 1k [ 2y G Pk] (&)
t are the perturbed densities corresponding to (w,k) and (2w, 2k) in lowest order.*
‘ The Fourier-transformed wave equations for E, and E, take the form:
Y - w? (19 (k,0))Ey, = wix, (k)P + driuj (D) 9)
U, = - BEEy KoP, ¢ drin TP (10)
M, = [(ke )"'-m’n:]l-fft:z . (11)




5
€, is the linear dielectric constant corresponding to (w,,k,) and ] denotes
the unit dyadic. The equations for Exy and Ezi are similar.

Next, the term involving P, is eliminated from Egs.(9-10) by using
Eq.(4). Solving for P, , we obtain

1 i@, Yo T 1), . @]

: aGoR = - G 5B o 2 [015Ps 0wl P ey, &) . a2)
| where

| A@,K) = 1ox; (k) + xg Oy0) = K7+ O 1e ML) oIy, (k0) (ox (p0))  (13)
is the modified linear dielectric constant in the presence of E , and

: £k
g -1 W :
M, = [1 iz ‘“gz‘:]/ D, , (14a)
with
g Using this expression for Pk » Eqs.(9-10) reduce to the following:
: @B = J@,k)/ +x; Gk,0)) (150)
A BE, = - M) ke J@K) (15b)
where j(z) ik.v, . X 4 A
J@k) = xy (yu)dei [ Ko —2 -(u,n; 5B w ML ))(l*xi(k.w))] ae)
o :
with similar expressions for E, and E, . Since
A(w,k) = 0 an)
is the linear dispersion relation, terms proportional to A(w,k) have been neglected

on the right hand side of Bqs.(15a-15b).
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Due to linear instability and nonlinear coupling, the waves E,,Ej,... €tC.

willnrymatiusulerw@lyoftheo:ﬂerofalineare-foldingtime. The
evolutionary equations for the wave amplitudes, obtained in the usual way, are

as fonows:"'

(:—t - v('k)) [ :“ ] e ep [ -1 (ug () ~2ug (K)) ]
E

m“l
wp (k)
J( ,ke :
()
: i M-l'-\; ikw (1+x. (k (18a)
"<t o (o) xi »w)) a
g . Ex -i !
(Si‘ Y(zk))[iz ] “Ea exp [ -1 (2wp (k) ~wp (2K)) t]
+ W l
wp (2K)
1
F J(ZuEZka
*xi 5 ) i
- My, Vo iZkug (1+x; (2k,20)) (18b)

where wp * Real(w) and the fields are assumed to be independent of

position. !7

Note that Egs.(18) mus* be modified for stimulated Brillouin scattering, since
in that case,

Mo+ i g k) = A@,K) + 1 g A Aw,K) + o
does not converge for (3/3t)Py << wP, . This is because M’ = 1/ (w-dw + il)) ,
and u-m-hc, for ion acoustic modes, so that M'l cannot be expanded in
a Taylor series about w .
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Using a linearized version of Eq.(10), J(w,k) and J(20,2k) can be
reduced to a term proportional to Pkak* and sz respectively, where the
proportionality constant is in general complex. Eqs.(18a), (18b) can then
be transformed, using Eq.(4), into a pair of equations involving P, and

sz only, which take the form

G - VB = o PuP" . 19)
G- Py =Pl (20)

respectively, where

i J
S =3 . s : (21a)
(m A) xe(k w)
wp (k)
™ 1 v (21b)
2 (%—A'r— X 2K, 2a) *
wp (2k)
J = J(@,k)/Py P, . (21c)
3, = Jw, 2 /R , (21d)

the small frequency mismatches have been neglected, and terms involving
K, +M; "+ M_') k¥ were eliminated by using the linear dispersion relation,
K. Q7). '

A solution to Egs.(19),(20) is sufficient to determine the nonlinear
evolution of all wave amplitudes, provided that appropriate initial conditions
are given. '* They apply to all parametric processes for which both A(w,k) = 0
and A(2w,2k) = 0.
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III. ANALYSIS
We now examine the properties of Igs.(19),(20). First, we transform
1
them into a dimensionless polar form. Setting T=Yt, Ak' [|c1c2|] /’Pk/y 3

and A2k' clpzkly , we obtain
(g - DA = Ahy"

(& - Day= a2,

where ¥ = ag(c;c,) and ¥ = y(k)/vy(k). In the polar representation,
A= ool Ayea, e s, (22),(23) take the fomm

hoo i ogmn .

2y = Tay + 5 00s09)
2

=0 ';:I sin(V-9) - 2azsin ¢ ,

where ¢=9¢, - 24, . Finally, setting Jc-aikze'z‘t k y-a&e'h , Eqs. (24)
through (26) reduce to the fol;owing:

j‘;x = 2Xy aos Oe’." ’
% = x coa(¢-y)e F-VIT

y & = @y ainy)- 2y%e 20T oimg)

(22)

(23)

(24)

(25)

(26)

@27

(28)

(29)




which imply

& weine=x2e@ Ny | (30)

Bys. (27)-(29) are now in a convenient form to be analyzed. There are two
general cases of solutions depending upon the sign of cos ¥ .

(i) coey>0:

We divide ¢ space into four regions. For ¢ in Quadrant I ,

lot c={¢:0<od<y} and c = {¢:9 < ¢ < v} , while for ¢ in Quadrant IV,
set c={o:9p <9 <0} and c= {¢:0 < ¢ < y*n} . Let c’sc’+ mand
c‘-c+w & According to Bq.(29), sgn(dé/dr) = 1 for 0¢{§:
which implies that, if ¢ ec u ¢~ , then ¢ changes monotonically until it
enters c , where it is trapped.

For ¢ e¢ ¢ , according to Egs.(27),(28), x and y increase. A lower
bound for (x,y) is obtained from a solution to :

E =ayooev, (31)

g%- X o8 Y , (32)

provided that ¥ s 2. This corresponds to the modulational modes discussed below.
The general solution to Eqs.(31),(32) is as follows:
MAean[re tan " y'M%)]  for M> 0
(33)
for M< 0, :

Mex-y (34)

is a constant of the motion, A = IMly‘(t-t')aocw , and the prime refers to
to an initial value corresponding to the time at which ¢ enters c .
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According to Bqs.(33),(34), x and y become unbounded when

[v/2 - tm-l(y'/MV’)}'Ml/’ooa v for M>0 ,

Y,
2 1 in L_LJT" M| 2 for M<0 ,
: 2|M|’ [y'* M| ] i

2008 ¥

T-1T's®= Te ® (35)

thus providing a conservative estimate of the time at which x and y become
infinite. For ¢ e c", d¢/dr can have either sign.

(ii) cos ¥ < O:

In this case, let c= {¢:0 < ¢ <y}, c= {$p:9 < ¢ <7},
ccew,and c'=cer for ¥ in Quadrant II, and let c = (o:0 < ¢ < 0} ,
ce{p:0<dp<ysm} , cmcem and c=c+r for ¥ in Quadrant III.

In general, for ¢ ec uc' , ¢ changes monotonically as before until it
enters c , where it is "trapped", and in general oscillates.

The pair (x,y) , however, may become explosively unstable. Assume for
definiteness that ¥ is in Quadrant II. When v -w%/2<é¢<n/2 , x and
y both increase with time. Consider the region y-§<é <d for some ¢, such that
¥-n/2 < ¢ < /2 . A lower bound for (x(t),y(tr)) is obtained from a solution
to the equations

d

a‘;x'mwls ’ (36)
d -
Fre xoond |, (37)

which is described by Eqs.(33)-(35), if ¢ is replaced by ¢ . The pair
(x,y) therefore becomes explosively unstable if ¢ remains in this region
for a time equal to t, as given by Eq.(35).

If 0(0) ¢ c* , d¢/dr can have either sign.
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IV. SCATTERING OFF MODULATIONAL MODES

Modulational modes are characterized by very long wavelengths, ke<k, -
They resonate with both Stokes and anti-Stokes waves and are such that
kE =o0. .In this case, ‘E';Z , where 3‘-. (kyc?/w,) is the group
velocity of the pump.

In the limit k<k, , w<<kc , the dielectric constant reduces to

-

e e A ARSI 57w o YN T AP S L RS

vas?
A(w,k) = 1 + Xt X * 2x°(1¢xi)( ocz )[ 1 ] (38)

(u-k'vg*il') 2.82

where § = (kc)?/w, and T , the collisional damping rate of the free
electromagnetic wave, has been added.
) We consider the following case:!»?

1) kvy<cuc<ky, , way 6’«(@-{-38)‘ g m"»miz

re<tm@) , @il , @ =a /FEPHD .
1

Modes exist with frequencies

kev
0l = —f 7 /0ev)? - 4T (Vp/e)u, (39)

which become unstable for m‘sﬂig-cupi.. Since w « k , (w,Zk) is also |
a mode and v(2k) = 2y(k) . Therafore, the frequency mismatch w(Z) - w(k)

in Bqs. (18) is exactly equal to zero. In this regime, x‘m,u)zwn)"u¢iﬁ(ume),
X ) = - (ap /u?) , and we £ind that

wp . 2
- z(T}.)n - (8/wy)?] 0(100,)) a/u)[ﬁge-;* Zr/u]. (40)
Re w(k)

2
-a-m-A
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Next, we calculate J = J(w,k) and J2= J(2w,2k). Assuming that
we find that J 2y Sk (2) where terms of arder 4 3{-i\’<q
EZk'Fk » + ~*"mo, ™ ’ e w\lw
' are neglected. Also,
: (2) | ik (2)
5 : 5 B Xe Px

4we

¢ if the second term in Eq.(8b), which is of the order

Ok

is neglected. Finally, comparing the two terms on the right-hand side of Eq.(16), 3
‘ we find that the second term is of order : 1

k z(Vo )’
—_—)l=] << 1 |
(ko) e i

of the first and can therefore also be discarded. Since these results also apply
to J2 » Eq.(16) can be reduced to the following:

- kv
_ iek o &
TS A (':o')xepk Fax i
. kv
-J‘k ——— )
Jz-'gm—,z(.,.)x.l” (41b)

where y,  is to be evaluated at (w,k) . The coupling coefficients take the form

qQ =- i.( )(k‘_’.) x"/[zlxil(l-(clui)’) + ix.(ﬁv + 2/w)] (42a) 3
e = -(m)( ) ’/[2')(1[(1-' 4(8/w, )3) + ix'(ﬁ— + Mw)] . (“2’5)
‘

which implies that

- ‘7 O "
o ! P .
B M gy NPT, 2 v




13
(2w, */w?)* Q- (8/w5)?) (1-4(8/w;)?) > w(w/kv,)? (43)

for an explosive instability, where I'/w was neglected compared to w/kv,
and, since |x;|/xq = w;*/w? . Eq.(43) is a condition which can be readily
satisfied.

nnstrmcthofthgmnnnuﬁtycanbeassessodbyalmhting the
initial value (x(0),y(0)). According to the definition

x(0) = |e;¢, P/Y|?

1 [ek\2( ¥\ xe. Pkr - Eoz
= — _— 44
37(.») ( mo) xiz (1'(6/‘”1)2) (1'4(6/‘91)2) E: o r ¢ )

where the imaginary parts of ¢ and <, have been neglected as a rough
approximation. According to Egs.(10), (14a),

et (52 N

v
Since y/w<<l , w? = /2 -c‘la.bi in Eq.(39) so that

v /u) ~(f-:=)‘ckx,,)"*= (wag) W/ 8)? -
Eq.(44) then takes the form
2
x@ = § (4 (%1)'(%)' BB, |2/ - (/0)®) Q-4 (80 (45)

which indicates that the nonlinearity is strong. If, as an example, we take

(‘/“1)3'%' ’ ./7'5 ’ (Jﬁi)z'So W'wlm'
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then, for an initial perturbation, |E_/E,| = 2 x 10" , we find that x(o) ~ 1 ,
y(o) = /Wc_zrz .3 ,and ¥ = -19° . Assuming that y' = y(o) in Eq.(35),
we find that M = x(0) - y2(0) = .9 and that the explosive instability occurs
at a time < v = 1.4 linear e-folding times. Since (6/w)?<<1 is required
for these modes, we note that harmonics higher than the second do not satisfy

. the linear dispersion relation and so need not be included in the calculation.

g S S T YIRS SIRT MR
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V. DISCUSSION

We have obtained a general formalism describing the nonlinear evolution
of the system (k,w), (k:""t)’ (Zk,2w), (kZ:’“’Z:) associated with the para- s
metric decay of an intense, coherent electromagnetic wave. This system was
reduced to an equivalent two-wave system consisting of the wave fields that
determine the first-order electron dynamics, P, and Py - The evolutionary
equations then assumed a standard form for wave-wave interactions with complex

coupling coefficients.

The polar angle , ¢ = arg(clcz) determines the essential behavior of
the system. In gmai, the system oscillates in a "trapped region" of ¢
space. If ¢ 1lies in the right-half plane, x and y can increase simul-
taneously and an explosive instability occurs. s

We then applied our results to a modulational mode and found that it E

can become explosively unstable within a time of the order of a linear e-
folding time. These modes, therefore, can grow to an appreciable size of
the pump (or perhaps of any other modes that can saturate them) within this
time.
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APPENDIX - Second Order Perturbed Currents and Densities

First, we calculate o(?) . According to Eq.(Se),

(2) [

-k’ v 2k

I H.MG [?‘”-v: *By Ve, +B g ] (A.1)

where ®wis real and 5§+0" is the prescription for integrating around the singu-
larity at k-v=w . The first term on the right-hand side of Eq.(A.1) is just

~(e/a1) & /0 }) @{P /)y (,w) . The second tern can be reduced as follows:

I pomy - St LI N _ivi-'k_‘
(w=kew+id) (w=kewib)?
--p_p. 28 l dv k.vvfo
2k w | U FT6? (arbeaeit)
» Y Ol (wektv+is)?
» gy [+ —L ]l
HOL (wkev18)  (writowid) 4
a k?

--ryr, %i;— Br{- 3 Xkt + ghr (XKt - x(k,oH8]}  @.2)

Since x(k,w) is analytic in the upper half complex w plane, x and
its derivatives can be continued analytically down to the real w axis.
We find that

2
dv ie Bk 1 32

§+ot | (wekewtid)
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Similarly,
avkev £
dv ie Vo
e P ,+V £, = - P.P
I @kemig) *VE kX @ J (w-E-v+ig)?
; . nk‘ 2
e g sz?.k %é—}ﬁrx&m (A.4)

Eq.(A.1) therefore reduces to Eq. (8b). Eq.(8c) is obtained in a similar way.
Next, we examine jl(:n . According t. Eq.(5a),

2 ->
O IJ.v_v_ B Eevf, + By Bevjg, o 2, B0 6]

LR 3 P )

(2)z. . .
PR £+ Py KT £ P KoV £ ]

£ +i6) k &

o 0%k | dv[(K-V-w-i8)+weis
m (tll‘

=-ef n@ A.5)

The current density j,\°) is reduced in a similar mammer.

The side-band contributions 3':(2) 2 -J'ziz) are more arduous to obtain;
however, since the system is non-relativistic, each integral is easy to evalu-
ate. It is necessary to have expressions for the linear perturbed electron

density distributions. The linear Vlasov equations are

2 1(“0.{0.?)&:1)- % o' Tvio =0 (A.6)
P ““’z"z"')ft '% (ﬁfvvfo i Eo'vvfk 2 Ek 'vzko) o S8 (.7
- ik -2 BovE =0, (A.8)

with similar expressions for ka’ P




! The sideband

@ | __av¥v 202,20 v £
}t E'I ("’:'!:'v’“) [ByTyfy™ Ek vfzko i H2k vo-kek

1 1
* By £5) + By gt) i E-l::l:o'vvakI y B8

i
e? dv v i (2)
| c—— 7 =
nJ (“'g'iz:;’is) [-o i ]
& -Q:- [m[ EO . f-ﬁov ]f ) %
) Le ki) @ %0 | K
. i ' (2]
ada; B @a.10)
in lowest order. .

In general, kS 2k , so that only the first term in Eq.(A.10) is significant.
(Modulational modes, in fact, have the property that K-, =0 .)

According to Eq. (A.6), fk:n is proportional to E_ . This implies
that the second term is, in fact, a contribution to 7} which e find to be
down by a factor [ (@,*)/(0,)1(1/x,). The third term,

p -> 1 -
ot [IVV !2k°vvf£k3:k, .. ] Ex M E, Ep e)
) @, g W, %, @, E, P2 ko

e Pl&, jﬁr . v ;Ezt ]g [M’fo.’fﬂvf-k* E-k°vvftk.]
@, K, V+i8) (K, Vig)2 ] ® o, &, V15)

- .W.t, [zgn &2 .§°m°n° ’ t0§°n_k) + (Et oin) G.wono + !On-k)] (A. u)

in lowest order.
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The fourth term

> ° (1 v .
e? J . E2: ik ; e? J dv[ I-"2: 2 vk, Ez: ] £@)
(w

AV —

af ,F,Pis) = W oK, Ti8) (K, ig)?| K
e2n@)
ik 1-»'-_: B 12}

in the lowest order. The fifth temm

-+ 1 > >
el I dv M - - .e_f.J dvr : E-k . i kt.g—k -l
» (w, -k, -V+i8) B |, E, i) w,k, V+ig)? |

r L4 . L]
ie EZ: Vo * Eo fax * EZk va:kg ]
s (w22° iz t-;*ié‘)

gh K, ), Ky, Vi6) + K, (w, K, -V+i6)
M 0k, 18 @y, Ky, veie)?

> >

(kt.E°k) I

o, -k, V+18) (uy, K, -V+i6)

+

P IEE 2K, (W, -Kyps+18) 4y, (0, -K:+16)
@, K, +7+i8)* (w,, K, -P+i8)?

x [B) £ 0By + EZkftkol

3 -
e P:T;r [!-k(saz“o)’ﬁz't-k)y'[EZ:no’EonZk]

A.13)
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The last term
e? dv v £ =N .‘f. av _Eﬂl_ £
al (0, K, Foig) o VZE ml W, k) X
e’n
I (A.14)
mw, -ktko

in the lowest order.

In general, the third and fifth terms are smaller, by at least an
order of magnitude, than the other terms and will be neglected. Eq.(A.9)
therefore reduces to the following:

+(2) _; & 2 | ikl
e %‘["é AL S E-k:ko] ; s

o

+(2)

Finally, we examine Jps" - According to Eq.(5d) ,

->

3@) el | 4 X Ede +E 0
J2s m] (“’2:&2:';’”5) [o vik "&v tk,

& Ek-vvftm + B0, (”] : (A.16)

The first term on the right-hand side of Eq.(A.16),

e? l » v go'vvfg)

e? I Eo
o m o s 4 & Gaaase
(wpy Ez: vig)  (wy, iz: v+ig)

VZkoE
0 f(Z)
= (‘"2:‘!2:"%“) ] o
(2)
.- ::7“ Eo (A.17)
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in the lowest order. The second term is a small contribution to }g) .
The third term

TP J“"[mz L, iy )

m (g, Ky, V+i8) w)? Kypr 7*i8) (o, oKy, V*i8)?

8 E, 0,8, + E, %% * Ek'vvf':k,
(w, -k, V+i8)

i ;;%:7- B Gkezk ) + (&, BB + By ]

(A.18)
and the fourth term
i] e J e LS
a5 (“‘2:°E21'w"6) = I_(“'Z:&z:';*i‘s) (“’2::'122:"-;&"5)z r
efnfl)
- E— b (A.19)

in lowest order. As in the analysis of J(2) , we find that the third tern
can in general be neglected. Eq.(A.16) therefore takes the form

*2) = ¢ 2 1
Sl i:.'g(iongk) A (A.20)
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